Extracellular acidification leads to mitochondrial depolarization with following free radical formation in rat brain synaptosomes
نویسندگان
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Role of iron, zinc and reduced glutathione in oxidative stress induction by low pH in rat brain synaptosomes
Brain ischemia leads to a decrease in pHo. We have shown previously in synaptosomes that the extracellular acidification induces depolarization of mitochondria followed by synthesis of superoxide anions and oxidative stress. Here, we investigated the effects of lowered pHo on oxidative stress and membrane potentials in synaptosomes treated by the iron chelator deferoxamine and zinc chelator TPE...
متن کاملInhibition of mitochondrial complex II affects dopamine metabolism and decreases its uptake into striatal synaptosomes.
The mitochondrial toxin, 3-nitropropionic acid (3-NP), is a specific inhibitor of succinate dehydrogenase, complex II in the mitochondrial respiratory chain. The aim of our study was to determine the relationship between inhibition of mitochondrial complex II and dopamine (DA) metabolism and its transport into rat striatal synaptosomes after exposure to 3-NP. The study was carried out using spe...
متن کاملRelationship between the release and uptake of noradrenaline by rat brain synaptosomes in the formation of defensive conditioned reflex.
The defensive conditioned reflex with two-way avoidance was developed in rats in a shuttle-box. Immediately and 30 min after learning the animals were decapitated and synaptosomes were isolated from the whole brain and brain cortex. Using [14C] and [3H]-noradrenaline (NA), the processes of uptake, spontaneous and potassium depolarization-induced (60 mM KCl) release of NA by brain synaptosomes o...
متن کاملاثر دپولاریزاسیون و عدم حضور یون کلسیم بر توزیع مس و روی در 5 ناحیه مغز موش صحرایی نر
Changes in Cu and Zn ion levels have been reported in many nervous system disorders such as Alzheimer’s disease, Wilson’s disease and Pick’s disease. The relationship between ion levels and polarization/depolarization of cell membrane is important since ion levels affect the state of polarization and depolarization of the cells. In this study, synaptosomes from different brain areas...
متن کاملAcidification reduces mitochondrial calcium uptake in rat cardiac mitochondria.
Cardiac ischemia-reperfusion (I/R) injury is accompanied by intracellular acidification that can lead to cytosolic and mitochondrial calcium overload. However, the effect of cytosolic acidification on mitochondrial pH (pHm) and mitochondrial Ca2+ (Cam2+) handling is not well understood. In the present study, we tested the hypothesis that changes in pHm during cytosolic acidification can modulat...
متن کامل